Search results for "Stem Cell Research - Nonembryonic - Non-Human"

showing 8 items of 8 documents

Adult rat myelin enhances axonal outgrowth from neural stem cells.

2018

Axon regeneration after spinal cord injury (SCI) is attenuated by growth inhibitory molecules associated with myelin. We report that rat myelin stimulated the growth of axons emerging from rat neural progenitor cells (NPCs) transplanted into sites of SCI in adult rat recipients. When plated on a myelin substrate, neurite outgrowth from rat NPCs and from human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) was enhanced threefold. In vivo, rat NPCs and human iPSC-derived NSCs extended greater numbers of axons through adult central nervous system white matter than through gray matter and preferentially associated with rat host myelin. Mechanistic investigations excluded …

0301 basic medicineAgingNeuronalNudeMessengerNeurodegenerativeInbred C57BLRegenerative MedicineMedical and Health SciencesMyelinMiceNeural Stem CellsStem Cell Research - Nonembryonic - HumanCyclic AMPAxonPhosphorylationGray MatterInduced pluripotent stem cellExtracellular Signal-Regulated MAP KinasesSpinal Cord InjuryMyelin SheathInbred F344Neuronal growth regulator 1Stem Cell Research - Induced Pluripotent Stem Cell - HumanChemistryGeneral MedicineBiological SciencesWhite MatterNeural stem cellCell biologymedicine.anatomical_structureSpinal Cord5.1 PharmaceuticalsNeurologicalFemaleStem Cell Research - Nonembryonic - Non-HumanDevelopment of treatments and therapeutic interventionsPhysical Injury - Accidents and Adverse EffectsNeuriteCell Adhesion Molecules NeuronalCentral nervous systemNeuronal OutgrowthArticleWhite matter03 medical and health sciencesRats NudemedicineAnimalsHumansRNA MessengerStem Cell Research - Embryonic - HumanTraumatic Head and Spine InjuryTransplantationStem Cell Research - Induced Pluripotent Stem CellNeurosciencesStem Cell ResearchRats Inbred F344AxonsRatsMice Inbred C57BL030104 developmental biologynervous systemChondroitin Sulfate ProteoglycansRNACell Adhesion Molecules
researchProduct

Adult Neurogenesis Is Sustained by Symmetric Self-Renewal and Differentiation

2018

Somatic stem cells have been identified in multiple adult tissues. Whether self-renewal occurs symmetrically or asymmetrically is key to understanding long-term stem cell maintenance and generation of progeny for cell replacement. In the adult mouse brain, neural stem cells (NSCs) (B1 cells) are retained in the walls of the lateral ventricles (ventricular-subventricular zone [V-SVZ]). The mechanism of B1 cell retention into adulthood for lifelong neurogenesis is unknown. Using multiple clonal labeling techniques, we show that the vast majority of B1 cells divide symmetrically. Whereas 20%-30% symmetrically self-renew and can remain in the niche for several months before generating neurons, …

0301 basic medicineTime FactorsNeurogenesis1.1 Normal biological development and functioningCellventricular-subventricular zoneMice TransgenicCell Counttime-lapse imagingSelf renewalBiologyself-renewalRegenerative MedicineMedical and Health SciencesTransgenicMice03 medical and health sciencesLateral ventricleslineage tracingNeural Stem CellsInterneuronsUnderpinning researchGeneticsmedicineAnimalsHumansCell Self RenewalB1 cellsagingdivision modeNeurogenesisNeurosciencesCell DifferentiationCell BiologyBiological SciencesStem Cell ResearchNeural stem cellCell biologysymmetric divisionB-1 cell030104 developmental biologymedicine.anatomical_structureNeurologicalMolecular MedicineStem Cell Research - Nonembryonic - Non-HumanStem cellDevelopmental BiologyAdult stem cell
researchProduct

Biciliated ependymal cell proliferation contributes to spinal cord growth

2012

Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by 3D ultrastructural reconstructions of [3H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, So…

Ependymal Cell1.1 Normal biological development and functioningMedical PhysiologyInbred StrainsSubventricular zoneMice Inbred StrainsBiologyRegenerative MedicineArticleSubgranular zoneMiceNeural Stem Cellscentral canalUnderpinning researchmedicineAnimalsependymaCell ProliferationNeurology & NeurosurgeryGlial fibrillary acidic proteinGeneral NeuroscienceNeurosciencesciliaAnatomyNestinStem Cell ResearchSpinal cordultrastructureNeural stem cellCell biologymedicine.anatomical_structureSpinal Cordbiology.proteinStem Cell Research - Nonembryonic - Non-Humansense organsEpendymaZoologyThe Journal of Comparative Neurology
researchProduct

May the force be with you: Transfer of healthy mitochondria from stem cells to stroke cells

2018

Stroke is a major cause of death and disability in the United States and around the world with limited therapeutic option. Here, we discuss the critical role of mitochondria in stem cell-mediated rescue of stroke brain by highlighting the concept that deleting the mitochondria from stem cells abolishes the cells’ regenerative potency. The application of innovative approaches entailing generation of mitochondria-voided stem cells as well as pharmacological inhibition of mitochondrial function may elucidate the mechanism underlying transfer of healthy mitochondria to ischemic cells, thereby providing key insights in the pathology and treatment of stroke and other brain disorders plagued with…

Cardiorespiratory Medicine and HaematologyMitochondrionRegenerative medicineRats Sprague-Dawley0302 clinical medicineStem Cell Research - Nonembryonic - Humanenergy metabolismStrokeStem CellsBrainCerebral ischemiaMitochondriaStrokeNeurologycellular bioenergeticStem Cell Research - Nonembryonic - Non-HumanStem cellmedicine.symptomCardiology and Cardiovascular Medicine1.1 Normal biological development and functioningClinical SciencesEnergy metabolismregenerative medicineInflammation03 medical and health sciencesUnderpinning researchmedicineAnimalsHumansNeurology & NeurosurgeryAnimalbusiness.industryMechanism (biology)NeurosciencesStem Cell Researchmedicine.diseaseRatsBrain DisordersTransplantationDisease Models AnimalinflammationDisease ModelsCommentarycellular bioenergeticsSprague-DawleyNeurology (clinical)businessNeuroscience030217 neurology & neurosurgerytransplantationJournal of Cerebral Blood Flow & Metabolism
researchProduct

Axonal control of the adult neural stem cell niche.

2014

SummaryThe ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSCs) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that acti…

Cellular differentiationMessengerRegenerative MedicineMedical and Health SciencesImmunoenzyme TechniquesLateral ventriclesMice0302 clinical medicineNeural Stem CellsReceptor Serotonin 5-HT2C5-HT2CStem Cell NicheNeurons0303 health sciencesMicroscopyBlottingReverse Transcriptase Polymerase Chain ReactionNeurogenesisBrainCell DifferentiationAnatomyBiological SciencesNeural stem cellCell biologySerotonin Receptor AgonistsElectrophysiologyNeurologicalMolecular MedicineStem Cell Research - Nonembryonic - Non-HumanWesternReceptorSerotoninEpendymal CellNeurogenesis1.1 Normal biological development and functioningBlotting WesternBiologySerotonergicReal-Time Polymerase Chain ReactionElectronArticle03 medical and health sciencesUnderpinning researchGeneticsAnimalsRNA Messenger030304 developmental biologyCell ProliferationRapheNeurosciencesCell BiologyStem Cell ResearchAxonsMicroscopy Electronnervous systemRaphe NucleiRNARaphe nuclei030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification.

2015

Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin reve…

BlastomeresTranscription GeneticCellular differentiationMedical and Health SciencesEmbryo Culture TechniquesEpigenomeNeural Stem CellsDevelopmentalMyocytes Cardiacbeta CateninOligonucleotide Array Sequence AnalysisEndodermGene Expression Regulation DevelopmentalEmbryoCell DifferentiationBiological SciencesStem Cells and RegenerationTrophoblastsmedicine.anatomical_structureembryonic structuresStem Cell Research - Nonembryonic - Non-HumanStem cellEndodermCardiacTranscriptionBrachyuryGrowth Differentiation Factor 151.1 Normal biological development and functioningBiologyCell LineGeneticUnderpinning researchmedicineGeneticsHumansHuman embryoCell LineageBlastocystMolecular BiologyEmbryonic Stem CellsMyocytesBlastomereHuman embryonic stem cellGene Expression ProfilingTrophoblastFibroblastsDNA MethylationStem Cell ResearchHuman trophoblast stem cellEmbryonic stem cellMolecular biology102Fate specificationBlastocystGene Expression RegulationGeneric health relevanceTranscriptomeDevelopmental Biology
researchProduct

Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus.

2020

Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interprete…

0301 basic medicineAdultAging1.1 Normal biological development and functioningNeurogenesisHippocampusneural progenitorsHippocampal formationRegenerative Medicinehuman hippocampusMedical and Health SciencesHippocampus03 medical and health sciences0302 clinical medicinedoublecortinStem Cell Research - Nonembryonic - HumanUnderpinning researchmedicineHumansdentate gyrusChildnew neuronsPediatricNeuronsNeurology & NeurosurgeryNeuronal PlasticitybiologyGeneral NeuroscienceDentate gyrusNeurogenesisPsychology and Cognitive SciencesNeurosciencesCell DifferentiationDual PerspectivesHuman brainStem Cell ResearchNeural stem cellDoublecortin030104 developmental biologymedicine.anatomical_structureNeurologicalbiology.proteinStem Cell Research - Nonembryonic - Non-HumanMental healthNeuronNeuroscience030217 neurology & neurosurgeryThe Journal of neuroscience : the official journal of the Society for Neuroscience
researchProduct

Single-cell analysis of the ventricular-subventricular zone reveals signatures of dorsal and ventral adult neurogenesis

2021

The ventricular-subventricular zone (V-SVZ), on the walls of the lateral ventricles, harbors the largest neurogenic niche in the adult mouse brain. Previous work has shown that neural stem/progenitor cells (NSPCs) in different locations within the V-SVZ produce different subtypes of new neurons for the olfactory bulb. The molecular signatures that underlie this regional heterogeneity remain largely unknown. Here, we present a single-cell RNA-sequencing dataset of the adult mouse V-SVZ revealing two populations of NSPCs that reside in largely non-overlapping domains in either the dorsal or ventral V-SVZ. These regional differences in gene expression were further validated using a single-nucl…

MaleNervous systemMouseTransgenicneuroscienceMiceNeural Stem CellsLateral VentriclesBiology (General)education.field_of_studyGeneral NeuroscienceNeurogenesisQRGeneral MedicineStem Cells and Regenerative Medicineadult neurogenesismedicine.anatomical_structureolfactory bulbNeurologicalMedicineStem Cell Research - Nonembryonic - Non-HumanFemaleSingle-Cell AnalysisStem cellMicrodissectionneuroblastResearch ArticleQH301-705.51.1 Normal biological development and functioningNeurogenesisSciencePopulationregenerative medicineSubventricular zoneMice TransgenicBiologysingle-cell sequencingGeneral Biochemistry Genetics and Molecular BiologyNeuroblaststem cellsUnderpinning researchGeneticsmedicineAnimalseducationmouseGeneral Immunology and MicrobiologyNeurosciencesStem Cell ResearchOlfactory bulbstem cellnervous systemBiochemistry and Cell BiologyNeuronTranscriptomeNeuroscienceNeuroscienceregional differenceseLife
researchProduct